\(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{\sqrt {d+e x} \sqrt {f+g x}} \, dx\) [736]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 48, antiderivative size = 167 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} \sqrt {f+g x}} \, dx=\frac {\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g \sqrt {d+e x}}-\frac {(c d f-a e g) \sqrt {a e+c d x} \sqrt {d+e x} \text {arctanh}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{\sqrt {c} \sqrt {d} g^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \]

[Out]

-(-a*e*g+c*d*f)*arctanh(g^(1/2)*(c*d*x+a*e)^(1/2)/c^(1/2)/d^(1/2)/(g*x+f)^(1/2))*(c*d*x+a*e)^(1/2)*(e*x+d)^(1/
2)/g^(3/2)/c^(1/2)/d^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+(g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*
x^2)^(1/2)/g/(e*x+d)^(1/2)

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.104, Rules used = {878, 905, 65, 223, 212} \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} \sqrt {f+g x}} \, dx=\frac {\sqrt {f+g x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g \sqrt {d+e x}}-\frac {\sqrt {d+e x} \sqrt {a e+c d x} (c d f-a e g) \text {arctanh}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{\sqrt {c} \sqrt {d} g^{3/2} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(Sqrt[d + e*x]*Sqrt[f + g*x]),x]

[Out]

(Sqrt[f + g*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(g*Sqrt[d + e*x]) - ((c*d*f - a*e*g)*Sqrt[a*e + c*
d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[g]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])])/(Sqrt[c]*Sqrt[d]*g^(3
/2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 878

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-(d + e*x)^m)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^p/(g*(m - n - 1))), x] - Dist[m*((c*e*f + c*d*g - b*e
*g)/(e^2*g*(m - n - 1))), Int[(d + e*x)^(m + 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b,
c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Intege
rQ[p] && EqQ[m + p, 0] && GtQ[p, 0] && NeQ[m - n - 1, 0] &&  !IGtQ[n, 0] &&  !(IntegerQ[n + p] && LtQ[n + p +
2, 0]) && RationalQ[n]

Rule 905

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Dist[(a + b*x + c*x^2)^FracPart[p]/((d + e*x)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p]), Int[(d + e*x)^(m + p)*
(f + g*x)^n*(a/d + (c/e)*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2
 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] &&  !IGtQ[m, 0] &&  !IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g \sqrt {d+e x}}-\frac {(c d f-a e g) \int \frac {\sqrt {d+e x}}{\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{2 g} \\ & = \frac {\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g \sqrt {d+e x}}-\frac {\left ((c d f-a e g) \sqrt {a e+c d x} \sqrt {d+e x}\right ) \int \frac {1}{\sqrt {a e+c d x} \sqrt {f+g x}} \, dx}{2 g \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \\ & = \frac {\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g \sqrt {d+e x}}-\frac {\left ((c d f-a e g) \sqrt {a e+c d x} \sqrt {d+e x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {f-\frac {a e g}{c d}+\frac {g x^2}{c d}}} \, dx,x,\sqrt {a e+c d x}\right )}{c d g \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \\ & = \frac {\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g \sqrt {d+e x}}-\frac {\left ((c d f-a e g) \sqrt {a e+c d x} \sqrt {d+e x}\right ) \text {Subst}\left (\int \frac {1}{1-\frac {g x^2}{c d}} \, dx,x,\frac {\sqrt {a e+c d x}}{\sqrt {f+g x}}\right )}{c d g \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \\ & = \frac {\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g \sqrt {d+e x}}-\frac {(c d f-a e g) \sqrt {a e+c d x} \sqrt {d+e x} \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{\sqrt {c} \sqrt {d} g^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 144, normalized size of antiderivative = 0.86 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} \sqrt {f+g x}} \, dx=\frac {\sqrt {(a e+c d x) (d+e x)} \sqrt {f+g x}}{g \sqrt {d+e x}}+\frac {(-c d f+a e g) \sqrt {(a e+c d x) (d+e x)} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {f+g x}}{\sqrt {g} \sqrt {a e+c d x}}\right )}{\sqrt {c} \sqrt {d} g^{3/2} \sqrt {a e+c d x} \sqrt {d+e x}} \]

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(Sqrt[d + e*x]*Sqrt[f + g*x]),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*Sqrt[f + g*x])/(g*Sqrt[d + e*x]) + ((-(c*d*f) + a*e*g)*Sqrt[(a*e + c*d*x)*(d +
e*x)]*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])/(Sqrt[g]*Sqrt[a*e + c*d*x])])/(Sqrt[c]*Sqrt[d]*g^(3/2)*Sqrt[a*e
+ c*d*x]*Sqrt[d + e*x])

Maple [A] (verified)

Time = 0.55 (sec) , antiderivative size = 188, normalized size of antiderivative = 1.13

method result size
default \(\frac {\sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \sqrt {g x +f}\, \left (\ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}}{2 \sqrt {c d g}}\right ) a e g -\ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}}{2 \sqrt {c d g}}\right ) c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}\right )}{2 \sqrt {e x +d}\, \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, g \sqrt {c d g}}\) \(188\)

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(g*x+f)^(1/2)/(e*x+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2*((c*d*x+a*e)*(e*x+d))^(1/2)*(g*x+f)^(1/2)/(e*x+d)^(1/2)*(ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a
*e))^(1/2)*(c*d*g)^(1/2))/(c*d*g)^(1/2))*a*e*g-ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(c*
d*g)^(1/2))/(c*d*g)^(1/2))*c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(c*d*g)^(1/2))/((g*x+f)*(c*d*x+a*e))^(1/2)/g/(c
*d*g)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.76 (sec) , antiderivative size = 516, normalized size of antiderivative = 3.09 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} \sqrt {f+g x}} \, dx=\left [\frac {4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} \sqrt {g x + f} c d g - {\left (c d^{2} f - a d e g + {\left (c d e f - a e^{2} g\right )} x\right )} \sqrt {c d g} \log \left (-\frac {8 \, c^{2} d^{2} e g^{2} x^{3} + c^{2} d^{3} f^{2} + 6 \, a c d^{2} e f g + a^{2} d e^{2} g^{2} + 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d g x + c d f + a e g\right )} \sqrt {c d g} \sqrt {e x + d} \sqrt {g x + f} + 8 \, {\left (c^{2} d^{2} e f g + {\left (c^{2} d^{3} + a c d e^{2}\right )} g^{2}\right )} x^{2} + {\left (c^{2} d^{2} e f^{2} + 2 \, {\left (4 \, c^{2} d^{3} + 3 \, a c d e^{2}\right )} f g + {\left (8 \, a c d^{2} e + a^{2} e^{3}\right )} g^{2}\right )} x}{e x + d}\right )}{4 \, {\left (c d e g^{2} x + c d^{2} g^{2}\right )}}, \frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} \sqrt {g x + f} c d g + {\left (c d^{2} f - a d e g + {\left (c d e f - a e^{2} g\right )} x\right )} \sqrt {-c d g} \arctan \left (\frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {-c d g} \sqrt {e x + d} \sqrt {g x + f}}{2 \, c d e g x^{2} + c d^{2} f + a d e g + {\left (c d e f + {\left (2 \, c d^{2} + a e^{2}\right )} g\right )} x}\right )}{2 \, {\left (c d e g^{2} x + c d^{2} g^{2}\right )}}\right ] \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(g*x+f)^(1/2)/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f)*c*d*g - (c*d^2*f - a*d*e*g + (
c*d*e*f - a*e^2*g)*x)*sqrt(c*d*g)*log(-(8*c^2*d^2*e*g^2*x^3 + c^2*d^3*f^2 + 6*a*c*d^2*e*f*g + a^2*d*e^2*g^2 +
4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*g*x + c*d*f + a*e*g)*sqrt(c*d*g)*sqrt(e*x + d)*sqrt(g*x +
 f) + 8*(c^2*d^2*e*f*g + (c^2*d^3 + a*c*d*e^2)*g^2)*x^2 + (c^2*d^2*e*f^2 + 2*(4*c^2*d^3 + 3*a*c*d*e^2)*f*g + (
8*a*c*d^2*e + a^2*e^3)*g^2)*x)/(e*x + d)))/(c*d*e*g^2*x + c*d^2*g^2), 1/2*(2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 +
 a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f)*c*d*g + (c*d^2*f - a*d*e*g + (c*d*e*f - a*e^2*g)*x)*sqrt(-c*d*g)*arctan
(2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*g)*sqrt(e*x + d)*sqrt(g*x + f)/(2*c*d*e*g*x^2 + c*d^2
*f + a*d*e*g + (c*d*e*f + (2*c*d^2 + a*e^2)*g)*x)))/(c*d*e*g^2*x + c*d^2*g^2)]

Sympy [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} \sqrt {f+g x}} \, dx=\int \frac {\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}{\sqrt {d + e x} \sqrt {f + g x}}\, dx \]

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(g*x+f)**(1/2)/(e*x+d)**(1/2),x)

[Out]

Integral(sqrt((d + e*x)*(a*e + c*d*x))/(sqrt(d + e*x)*sqrt(f + g*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} \sqrt {f+g x}} \, dx=\int { \frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{\sqrt {e x + d} \sqrt {g x + f}} \,d x } \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(g*x+f)^(1/2)/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(sqrt(e*x + d)*sqrt(g*x + f)), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 409 vs. \(2 (139) = 278\).

Time = 0.46 (sec) , antiderivative size = 409, normalized size of antiderivative = 2.45 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} \sqrt {f+g x}} \, dx=\frac {\frac {{\left (\frac {{\left (c d e f - a e^{2} g\right )} \log \left ({\left | -\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} \sqrt {c d g} + \sqrt {c^{2} d^{2} e^{2} f - a c d e^{3} g + {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )} c d g} \right |}\right )}{\sqrt {c d g} g} + \frac {\sqrt {c^{2} d^{2} e^{2} f - a c d e^{3} g + {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )} c d g} \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}}}{c d e g}\right )} {\left | c \right |} {\left | d \right |}}{c d} - \frac {c^{2} d^{2} e^{2} f {\left | c \right |} {\left | d \right |} \log \left ({\left | -\sqrt {-c d^{2} e + a e^{3}} \sqrt {c d g} + \sqrt {c^{2} d^{2} e^{2} f - c^{2} d^{3} e g} \right |}\right ) - a c d e^{3} g {\left | c \right |} {\left | d \right |} \log \left ({\left | -\sqrt {-c d^{2} e + a e^{3}} \sqrt {c d g} + \sqrt {c^{2} d^{2} e^{2} f - c^{2} d^{3} e g} \right |}\right ) + \sqrt {c^{2} d^{2} e^{2} f - c^{2} d^{3} e g} \sqrt {-c d^{2} e + a e^{3}} \sqrt {c d g} {\left | c \right |} {\left | d \right |}}{\sqrt {c d g} c^{2} d^{2} e g}}{e} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(g*x+f)^(1/2)/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

(((c*d*e*f - a*e^2*g)*log(abs(-sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*sqrt(c*d*g) + sqrt(c^2*d^2*e^2*f - a*c*
d*e^3*g + ((e*x + d)*c*d*e - c*d^2*e + a*e^3)*c*d*g)))/(sqrt(c*d*g)*g) + sqrt(c^2*d^2*e^2*f - a*c*d*e^3*g + ((
e*x + d)*c*d*e - c*d^2*e + a*e^3)*c*d*g)*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)/(c*d*e*g))*abs(c)*abs(d)/(c*d
) - (c^2*d^2*e^2*f*abs(c)*abs(d)*log(abs(-sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*g) + sqrt(c^2*d^2*e^2*f - c^2*d^3*e*
g))) - a*c*d*e^3*g*abs(c)*abs(d)*log(abs(-sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*g) + sqrt(c^2*d^2*e^2*f - c^2*d^3*e*
g))) + sqrt(c^2*d^2*e^2*f - c^2*d^3*e*g)*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*g)*abs(c)*abs(d))/(sqrt(c*d*g)*c^2*d^
2*e*g))/e

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} \sqrt {f+g x}} \, dx=\int \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{\sqrt {f+g\,x}\,\sqrt {d+e\,x}} \,d x \]

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/((f + g*x)^(1/2)*(d + e*x)^(1/2)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/((f + g*x)^(1/2)*(d + e*x)^(1/2)), x)